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The relations between the lower semicontinuity of the metric projection Pg; onto
a finite-dimensional subspace G of L,, the Lipschitz continuity of P, the existence
of continuous selections for P, and uniform strong uniqueness of P are studied.
In particular, the lower semicontinuity of Pg;, the Lipschitz continuity of P,
and the uniform strong uniqueness of P, are all equivalent. If P is lower
semicontinuous, then Pg; has a Lipschitz continuous selection. Moreover, if G is
one-dimensional, P; has a continuous selection if and only if it has a Lipschitz
continuous selection.  © 1991 Academic Press, Inc.

1. INTRODUCTION

We will study strong uniqueness, Lipschitz continuous and continuous
selections for metric projections in L,(T, 1), and some relationships which
hold between these properties. Our study reveals that the theory of metric
projections in L(T, p) contrasts dramatically from the theory in Co(T).
Our approach is to study the uniform Hausdorff strong uniqueness of
metric projections, since the uniform Hausdorff strong uniqueness implies
the Lipschitz continuity of metric projections [25, 26]. This is not sur-
prising, since it iS a common practice to prove the pointwise Lipschitz
continuity of P; in Cy(T) by first showing that P; is strongly unique.
There is now a large body of literature that has evolved from the study of
strong uniqueness and Lipschitz continuity of metric projections in Cy(7)
(see, e.g., [3, 6, 10, 22-24] and references therein).

A particular feature of our approach is that vector measure theory plays
an essential role in the proofs of the key resuits. More specifically, the
Liapunov convexity theorem [18,20] and the Landers connectivity
theorem [14] will be used to handle nonatomic measurable sets. Recall
that the Liapunov convexity theorem is quite useful for proving results
about best L,-approximations. Two well-known results in L, approxima-
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tion theory were given elegant proofs via the Liapunov convexity theorem;
one is about the nonexistence of finite-dimensional Chebyshev subspaces
on a nonatomic measure space [27,28], and another is about the
equivalence of A-subspaces and finite-dimensional Chebyshev subspaces
with respect to varying weights [30].

Before stating the main results in this paper, we define the notation and
terminology which will be used. L,(7, u) will denote the Banach space of
all integrable functions on the measure space {7, 1) with the norm defined
by

If1=] ifldu  for feLi(T.n)

G will always denote a finite-dimensional subspace of L,(T, p). The metric
projection Pg from L(T,u) onto G is the set-valued mapping from
LT, u) onto G defined by

Po(f)={geG:|f—gl=d(f, G)} for feL(T )

where

d(F,, Fy):=sup inf |g;— gl for Fy, F,cLy(T, ).

gief gpeh

G is called a Chebyshev subspace if Pg(f) is a singleton for every f. The
Hausdorff metric H(-, -) is defined on the coliection of all nonempty closed
and bounded subsets € (L (T, u)) of L,(T, u) by

H(F,, F,) :=max{d(F,, F,), d(F,, F,)} for F,, F,eG(L{(T, u))

For feL(T,p), let Z(f):={teT:f(¢)=0}, supp(f):=T\Z(f), and
supp(G) =, supp(g). As usual, all subsets of T are only defined up to
a set of measure zero. A measurable subset 4 of T is called an atom if
u(A)>0 and for any measurable subset B of 4, either u(B)=p{4) or
u{B)=0. Following [87, we will call a set unifaz if it is the union of finitely
many atoms. A nonzero function ge L,(T, u) is said to satisfy the Lazar
condition if whenever B < supp(g) with |, |g| du= | gll/2, then either B or
supp(g)\ B is a unifat.

Since dim G is finite, recall that P is lower semicontinuous if and only if

}}inf} H(Ps(f), P(h))=0

for each feL,(T, pn). Pg is said to be Lipschitz continuous if there is a
constant 1> 0 such that

H(Ps(f), Pe(h)<A-|f—hi
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for all f; he L (T, u). P is said to be uniformly Hausdorff strongly unique
if there is a constant y > 0 such that

If— gl = d(f, G)+7-d(g Ps(S))

for all fe L (T, p), geG. This is the set-valued generalization of the usual
strong uniqueness for Chebyshev sets. A mapping S: L, (7, u) — G is called
a continuous (or Lipschitz continuous) selection for Pg if S is continuous (or
Lipschitz continuous) and S(f)e Pg(f) for each fe L,(T, p).

We can now summarize the main results of this paper. In Section 2 we
include some basic facts about L (T, u)-approximation. One interesting
case is when L,(T, u) =1!,(n), the n-dimensional Euclidean space with the
I,-norm. There we see that P is Lipschitz continuous and has a Lipschitz
continuous selection for any subspace G of /,(n). Moreover, if G is a
Chebyshev subspace of /,(n), then P is uniformly strongly unique (cf.
Corollary 2.1). In Section 3 Lipschitz continuous metric selections are
studied. It turns out that, for one-dimensional subspaces G =span{g}, Pg
has a Lipschitz continuous selection if g satisfies the Lazar condition
(Theorem 3.2). Hence, we deduce from [8] that if G=span{g}, then Pg
has a Lipschitz continuous selection if and only if P; has a continuous
selection. In Section 4 we show that the elements of P(f) are completely
determined by their behavior on the atomic part of supp(G), provided that
G is a finite-dimensional subspace of L,(T, u) and P; is lower semi-
continuous (Theorem 4.2). Moreover, there is a union 4 of finitely many
atoms in 7 such that g is a best L -approximation to f from G in L,(T, p)
if and only if g | 4 is a best L,-approximation to f|, from G|, in L,(4, u)
for any fe L,(T, u) (cf. the remark after Lemma 5.1). In the final Section 5
we see that the lower semicontinuity of P, the Lipschitz continuity of P,
and the uniformly Hausdorff strong uniqueness of P, are all equivalent
(Theorem 5.2). In particular, if G is a finite-dimensional Chebyshev
subspace of L,(T, u), then P is uniformly strongly unique and Lipschitz
continuous. Further, if P is lower semicontinuous, then P has a Lipschitz
continuous selection (Corollary 5.2). This is a substantially stronger result
than can be deduced solely from the Michael selection theorem [22].

We conclude the introduction by mentioning some results in the space
Co(T) which provide a striking contrast to the analogous ones in L(T, u).
(Here T is a locally compact Hausdorff space and Cy(T) is the Banach
space of all real continuous functions f on T such that {re T:|f(¢)| =¢}
is compact for each £¢>0, and [ f|| =max,_,|f(¢).) If T is compact and
infinite and G is a finite-dimensional Chebyshev subspace of Cy(7), then
P is Lipschitz continuous if and only if dimG=1 [2,4,5,16]. If G is a
finite-dimensional subspace of Cy(T'), then P; has a Lipschitz continuous
selection if and only if P is Lipschitz continuous [16]. (In L (T, u), there
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exists a finite-dimensional subspace G such that P; is not lower semi-
continuous, but Pg has Lipschitz continuous—even linear—selections {cf.
[7,191)). In Cy(T), there exists a one-dimensional Chebyshev subspace G
whose metric projection P is not Lipschitz continuous {cf. [167]). {This
should be contrasted with Theorem 3.3.)

2. SoME Basic FACTS ABOUT L,-APPROXIMATION

In this section we present some basic facts about L,-approximation
which will be used later in this chapter. Lemmas 2.1-2.5 are known results.
Lemmas 2.6 and 2.7 are elementary lemmas about the w*-topology on
L (A4, p) for a purely atomic set 4. Theorem 2.1 is of interest in its own
right. It shows that if M is a subspace of a polyhedral space, then P, is
uniformly Hausdorff strongly unique and Lipschitz continuous. As a conse-
quence, we obtain that if supp(G) is a unifat, then P, is uniformly
Hausdorff strongly unique and Lipschitz continuous.

First let us recall some known facts about best L;-approximations.

LemmaA 2.1 (Kripke and Rivlin [13]). Let fe L (T, u) and ge G. Then
g€ Ps(f) if and only if

[ iplduz[ p-sien(f—g)du  forall peG.
Z(f-g) T

LemMa 2.2 (Phelps [287). If Bnsupp(G) is non-atomic, then there is a
mapping @: B— {—1,1} such that 5 g-¢ du=0 for all g€ G.

Lemma 2.3 (Deutsch, Indumathi, and Schnatz [8]). Let ge L (T, u)\
{0} and G=span{g}. Then Pg; has a continuous selection if and only if g
satisfies the Lazar condition.

The special case when L,(T, u)=1/, was proved in a different way by
Lazar [15].

LemMa 24 (Li [17]). Pg is lower semicontinuous if and only if
supp(g; — g,) is a unifat for any fe L (T, u) and distinct g, g, € Ps(f).

LemMMA 2.5. Let fe L (T, u), g*€Pe(f), and g G. Then ge Po(f) if
and only if g satisfies

(1) [f(y—gO1Lf()—g*(1)1=0 for teT, and
() Sz em lg—g*l du=[, (g—g*) - sign(f—g*)dun.
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Remark. See Strauss [31], Pinkus [29], and Li [17].

LEMMA 2.6. Let A be a purely atomic subset of T and let {¢;} be a
bounded sequence in L (A, p). Then w*-lim; ,  @;,=¢ if and only if
lim;_, . @;(e)=o(e) for all e€ A.

Proof. Suppose w*-lim,_, , ¢, =¢. Let A= {e,:kel}. Then

limJ qojd/t=j ¢ du for kel
ef e

PR
1e.,

,-]in; o;(er) - ule) =oler) -ple,)  for kel (2.1)

which is equivalent to the atomwise convergence of {¢;}. On the other
hand, if (2.1) holds, then

lim f <pj-fdu=f @-fdu
J>©o Y4 A

for fe L (A4, p) with supp(f) a unifat. However, the set of all fe L,(4, 1)
with supp(f) a unifat is dense in L,(A4, ). Thus, (2.1) implies that {¢;} is
w*-convergent to ¢. This proves Lemma 2.6. ||

Next we show that the set of measurable signatures on a purely atomic
set 4 is w¥-compact in L (A4, u). Define

& :={peL, (4, u):ple)e{—1,0,1} forec 4}, (2.2)
Z:={peL (4 u):ple)e{0,1}forecd}={yz: BcA4}. (2.3)

Since @ and & are closed under the atomwise convergence, by Lemma 2.6,
@ and & are w*-closed in L (A4, u). By the Alaoglu—Bourbaki theorem
[12], @ and & are w*-compact. This proves the following lemma.

LemMa 2.7, @ and I are w*-compact for any purely atomic set A.

Recall that a finite-dimensional normed linear space X is called a
polyhedral space, if the unit ball B(X) of X is the convex hull of a finite set
[11,21]. Maserick [21] showed that X is a polyhedral space if and only
if its dual X* is a polyhedral space. Now we want to show that if M is a
subspace of a polyhedral space X, then P,, is uniformly Hausdorff strongly
unique and Lipschitz continuous. As a consequence, we obtain that P is
uniformly Hausdorff strongly unique and Lipschitz continuous for any
subspace G of L(T, u), provided supp(G) is a unifat.
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THEOREM 2.1. Suppose that X is a polyhedral space. Then for any
subspace M of X, P, is uniformly Hausdorff strongly unique; ie., there
exists A>0 such that

lx—gl=dlx, M)+ A-d(g, Py(x)) for geM,xeX. (24)
Furthermore, P, is Lipschitz continuous; i.e., there exists ¢ >Q such that
H(Py(x), Py(y))sc-lx—yl  for x yeX, (2.5)

where H(-,-) is the Hausdorff metric.

Proof. By [21, Theorem 2.7], the dual X™* of X is a polyhedral space.
Then the unit ball B(X*) of X* is a convex hull of a finite set {x}*}{. Thus,
we have

flx]] :sup{|x}*(x)[ 01 S]Qr} for xeX. (2.6)
Let T'={x*}7. Define ¢: X — C(T) as follows:

P(x)(xf) == x(x) for 1<j<r 2.7}

Let M, :=@(M). Then M, is a subspace of C(T). Since for any ge M,
T\ Z(g) is a compact set, a result of Li [16] implies that P, is uniformly
Hausdorff strongly unique and Lipschitz continuous. Thus, there exist
A>0, ¢>0 such that

If—gll=d(f, M)+ A-d(g, Py (f)) for geM,, feC(T), (28)
H(Py (f), Py (h))<c || f—hll  for f heC(T) (29)

Now, by (2.6) and (2.7), it is easy to verify that | x| = lo(x}|, d(x, M) =

d(o(x), M), d(g, Py(x))=d(o(g), Py (@(x))), and H(Py(x), Py{y))=
H(Py (o(x)), Py, (@(y))). Hence, (2.4) and (2.5) follow from (2.8) and
(29). 1

COROLLARY 2.1. Suppose that supp(G) is a unifat. Then P is uniformly
Hausdorff strongly unique and P is Lipschitz continuous.

Proof. Let A=supp(G) and X={fe L (T, u): T\A<Z(f)}. Then G
is a subspace of the polyhedral space X. By Theorem 2.1, P , is uniformly
Hausdorff strongly unique and Lipschitz continuous; i.c., there exist A >0
and ¢ >0 such that

If—gl=d(f,G)+4-d(g, Ps(f)) for geG, feX, (2.10)
H(Ps(f), Pe(h)<c-lf—hl  for f heX (2.11)
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Given any f, he L,(T, u), let f, hye X be such that fy=/fon 4 and hy=4
on A. Then Ps;(f)= Pg(f,) and Pg(h) = Pg(hy). Thus, by (2.10), we get

If=gl=|  1/1du+1fo=sl

>L\A |l du+d(fo, G)+ A-d(g, Ps(fo))

=d(f, G)+4-d(g, Ps(f))
By (2.11), we deduce that, for f, he L (T, p),

H(Pg(f), Po(h))=H(Ps(fo), Pslho))<c-fo—holl <c-|f—hl.

Thus, P is uniformly Hausdorff strongly unique and Lipschitz con-
tinuous. |

Remark. A consequence of Corollary 2.1 is a result of Angelos and
Schmidt [1], which states that if (7, u) is a unifat, then P is strongly
unique at f whenever P;(f) is a singleton.

3. LipscHITZ CONTINUOUS METRIC SELECTIONS AND LAZAR’S CONDITION

Our main goal in this section is to show that P; has a continuous
selection if and only if P has a Lipschitz continuous selection, provided G
is a one-dimensional subspace of L,(T, u). Our method is to reduce the
problem to the case that supp(G) is a unifat. More specifically, we will
show that if P, has a continuous selection, then some elements in Pg(f)
can be determined by their behavior on a unifat. To do so, we need a
formally stronger, but equivalent, version of the Lazar condition which is
the key to the reduction procedure mentioned above.

To get the stronger version of the Lazar condition, we need the following
corollary of the Liapunov convexity theorem [18, 20, 27].

LemMma 3.1. If B is a non-atomic set and j 5 18ldu>c=0, then there
exist E< B such that [ |g| du=c.

Now we can show that the nonatomic part of supp(g) is not essential in
the Lazar condition. In the sequel, we will denote the atomic part of

supp(g) by at(g).

LemMA 3.2. Suppose that ge L\(T, p) satisfies the Lazar condition. If
Besupp(g) and [ 5 |gl du> gl /2, then [, - 5 18] du>llgll/2-
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Proof. If jat(g)ﬁB |gl du < |igll/2, then B\(Bnat(g)) is nonatomic and

| gl du= Igldi—[ lgldu
B\(Bnat(g)) B Brat(g)
gl
> du.
2 J‘Bmatfg) |g| #

By Lemma 3.1, there is E < B\at(g) such that

0<u(E)<u(B\at(g), and gl du=151

‘[Eu(at(g)nB) 2

Since u(E)>0, u((B\at(g))\E)>0, and F and (B\at(g))\E are purely
nonatomic, we know that Eu (at(g) n B) and supp(g)\{Eu (at(g) n B)}
both are not unifat, which contradicts the fact that g satisfies the Lazar
condition. §

Next we show that we can replace the at(g) in Lemma 3.2 by a unifat.
LEmMA 3.3.  Suppose that g satisfies the Lazar condition. Then there is a

unifat set A <supp(g) such that for any B < supp(g) with |, |g| > llgll/2, we
have

gl
duz——.
LM gl du==
Proof. For convenience, let us denote
X = {yz:Bcat(g)}, (3.1)
S(op) :=L o-lgldu for peZ. (3.2}

1t follows from Lemma?2.7 that & is w*-compact. Since S{.} is
w*-continuous on &,

N :={goe§€:S((p)=H%“} (3.3}

is a w*-compact subset of Z. Let yze 4. We discuss the following two
cases:

(1) B is a unifat:
Then

Virs) :={peZ : p(e)=1yz(e) for ec B}
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is a (relatively) w*-open neighborhood of y, in . Obviously,

S@)=] o-1g1du>] xp gl =Ll for pevuN) B4

(2) B is not a unifat:

Then, since g satisfies the Lazar condition, supp(g)\ B is a unifat. Thus,

Vixs) :=={peZ : p(e)=ysz(e) for eesupp(g)\B}

is a (relatively) w*-open neighborhood of y, in . Obviously,

S)=[ o-lgidu<] xolgldu=EL o peVuNs)  (3)

Moreover, supp(g) is a unifat; i.e., supp(g) = at(g).
If at(g) is a unifat, let 4=at(g). Then Lemma 3.3 follows from
Lemma 3.2. Thus we may assume

at(g) = {e;} .

If Lemma 3.3 fails to be true, then there are B, =supp(g) such that for
k=1,

lgll

S(xs,)> N and (3.6)
S g feyt) <‘H§L (3.7

Since 4" is w*-compact, we may assume that for some B < at(g),

Wi B 5, ot =1n- (338)
It follows from Lemma 2.6 that (3.8) implies

wh-Um g ey =2se (39)
By (3.6) and Lemma 3.2, we obtain

l
Sy toag) > 1oL (3.10)



'UNIQUENESS AND CONTINUITY 207

It follows from (3.7)-(3.10) that

St =121 G.11)

ie., yze 4. Recalling that ¥(x) (defined in cases (1) and (2) above) is a
(relatively) w*-open neighborhood of y, it follows that there exists n such
that

KBy (e} LBy ey € V{xg)- (3.12)

If B is a unifat, then (3.4) and (3.12) contradict (3.7). Otherwise, it follows
from (3.5), (3.10), and (3.12) that

s

XB=Xg,r (e (3.13)

Since supp(g)=at(g)= {e;}{ in this case, (3.13) implies xz=yz, Which
contradicts (3.11) and (3.6). The contradiction proves Lemma 2.3. §

Remark. The proof of Lemma 3.3 implies a formally stronger version of
the Lazar condition. In fact, (3.4) and (3.5) imply that each ¢ in A" is an
isolated point. Since A" is w*-compact, & must be a finite set. Let 4 be
the union of all unifats B whose characteristic function yz& .#". Then 4 is
still a unifat. Let B < supp(g) be such that [, |g| du= | g| /2. Then either B
or supp(g)\B is a unifat whose characteristic function is in .4#". Therefore,
either B« A or supp(g)\B < A. This proves the following corollary.

CoroLLARY 3.1. Let ge L (T, p)\{0}. Then g satisfies the Lazar condi-
tion if and only if there is a unifat A < supp(g) such that either B< A or
supp(g)\B = A whenever B is a subset of supp(g) with fa gl du=1lgl/2.

By Lemma 3.3, we can show that if g satisfies the Lazar condition and
G =span{g}, then some elements in Ps(f) are completely determined by
their behavior on the unifat 4 in Lemma 3.3.

THEOREM 3.1. Suppose that ge L (T, )\ {0} satisfies the Lazar condi-
tion and G =span{g}. Then there is a unifat A csupp(g) such that

Pe(f)=o{peG:plsePs,(fls)}  forall feL(T,p), B>4. (3.14)

Proof. Let A be the same unifat as in Lemma 3.3. Then for any B> 4
and any E < supp(g) with {. ig| > gl /2, we have

| lglauz] gl dﬂz%"—”—. (3.15)
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Fix feL,(T,u) and Bo 4. Let peG be such that p|ze Ps | (f]5) By
Lemma 2.1,

f g-sign(f — p) du< f iqgldu  for qeG,

Z(f—p)NB

which is equivalent to

.Lg-sign(f—p)du’sf lg| du. (3.16)

Z(f—p)nB

Let A,={reT:(—1)"-g(r)-sign(f()— p(t)) >0}, i=1,2. If |, |gl du>
gl /2 for some i, then, by (3.15), we get

f 2| du > 18l (3.17)
A;in B 2
It follows from (3.16) and (3.17) that

lell

=< du< d. 3.18

3 <l ledus|  lslde (3.18)
But then

= dp= dp+ d

sl =] lgldu=] lgldu+ ] lgldu

>[ lgldu+| lgldu
A; B\ A4;

,lsl , 1sl
o=l

which is absurd. Thus we must have

lel

f gl dp<—— >

Then
[, eaustEl<] ieldn
T\4,

=[ leldu+] lg! du.
A2 Z(f—p)
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Interchanging the roles of 4, and 4,, we deduce

'L gldu=] gl dul <[ gl

which is equivalent to

}f q-sign(f—p)du|<j gldu for qeG.
T y4 p)

By Lemma 2.1, pe Pg(f). Hence, (3.14) holds. }§

Next we give an application of Corollary 2.1, which shows that if we can
reduce the L;-approximation to the L,-approximation on a unifat of 7,
then the metric projection has a Lipschitz continuous selection.

LeMMA 3.4. Suppose that there is a unifar A such that

Po(f)>{geG: gl ePs  (fl)}  foral feLT, p)
Then Pg; has a Lipschitz continuous selection.

Proof. 1 geGand [, |g|du=0, then 0e Py (g],); ie,

which implies g =0. Hence, j 4 |g| du for g e G defines a norm on G. Thus,
there is a constant a >0 such that

||g|2<ocL lgldu for geG. (3.19)

Let

Ps(f,A):={geG:gl P (fla)} for feLy(T, p).

Then Pg(f, A) 4= P (f14) for feL(T, ). By Corollary 2.1, there is
f >0 such that, for f, he L (T, p),

H(Pg(f, A) |4, Polh, A) | ) <P L |f—hldu<B-Ilf—hl. (320}

By (3.19), we obtain

H(Pgs(f, A), Pg(h, 4))
SaH(P(f, A) | 1 Polh, A) 1) for f, he L(T, p). (3.21)

640/66/2-7
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It follows from (3.20) and (3.21) that Ps(-, 4) is Lipschitz continuous.
Obviously, the set Ps(f, 4) is convex and compact for every fe L (T, u).
By a result of Deutsch, Li, and Park [9, Proposition 2.3], Pg(-, A) has a
Lipschitz continuous selection ¢. Since o(f) e Pg(f, A) = Ps(f), o is also a
Lipschitz continuous selection for Pg. |

As a consequence of Lemma 3.4 and Theorem 3.1, we have the following
theorem.

THEOREM 3.2. Suppose that ge L,(T, p)\{0} satisfies the Lazar condi-
tion and G =span{g}. Then Pg has a Lipschitz continuous selection.

Finally, let us summarize the results proved in this section, together with
the known Lemma 2.3.

THEOREM 3.3. Let ge L((T, p)\{0} and G=span{g}. Then the follow-
ing are equivalent:
(1) Pg has a continuous selection;
(2) Pg has a Lipschitz continuous selection;
(3) g satisfies the Lazar condition;

(4) There is a unifat Acsupp(g) such that either Bc A or
supp(g)\B < A whenever B <supp(g) with |, |g| du= gl /2.

4. BEST APPROXIMATION ON THE ATOMIC PART OF supp(G)

In this section we show that the elements in Pg(f) are completely
determined by their behavior on the atomic part at(G) of supp(G) (cf.
Theorem 4.2), provided P is lower semicontinuous.

For convenience, let us use the following notations:

@ :={peL,(at(G), u): p(e)e {—1,0,1} for ecat(G)}, (4.1)
, 8, E):= du— -gdu— du, 4.2
Q(e, 8, E) fz«,,) |81 du Lmq) g du JE |81 dp (4.2)

A(p, E):={geG:Q(p, g E)=0}. (4.3)

Our intention is to show that Q(¢, g, T\at(G)) =0 for all g e G, provided
O, g, F)=0 for all ge G (Theorem 4.1). This will be used to prove that
8 laye) 18 a best L -approximation to f|,.s) from G |, if and only if
g€ Ps(f) (Theorem 4.2). To do so, we need to show that elements in
A(@, E) have unifat supports (Lemma4.1) and Q(¢, g, E)< (o, E)-
I meueyor 18l dufor geG (a corollary of Lemma 4.2).
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LemMa 4.1. Suppose that P is lower semicontinuous. If oe® and
E < T\at(G) are such that Q(o, p, E)=0 for all pe G, then supplg) is a
unifat for each ge A (¢, E)\{0}.

Proof. By Lemma 2.2, there is a mapping ¢, : T\(at(G)V E)~ { —1,1}
such that

j p-p,du=0 forall peG. (4.4)

T\(at(G)u E)

Suppose ge A (¢, E)\{0}. Let {g;}} be a basis of G. Define

., h(t) p(1), teat(G)
h=lgl+ ¥ lgl, and  f(t) =< h(r)sign(g(z)), teE
7=t h(t) @ (1), te T\(at{G) U E).

From the definition of f, we deduce
f)-(f(t)y—g(1)=0  for teT. (4.5)
From (4.4), the hypothesis that Q(o, g, E) =0, and the definition of f, we
deduce that
[ g-sien(f)du=] gl du (4.6)
T z()

Now, by (4.4) and Q(¢, p, E) >0, it is not difficult to verify that

[ |p|du>f p-sign(f)du  for peG.
Z(f) T

By Lemma 2.1, 0€ P;(f). From (4.5), (4.6), and Lemma 2.5 we know that
g€ Pg(f). Since P; is lower semicontinuous, by Lemma 2.4, supp(g)=
supp(g ~0) is a unifat. ||

Remark. 1f supp(g) is a unifat for some ge G\ {0}, then

5(g) :=inf{|g(e) | u(e) : eesupp(g)} > 0. (47)

Therefore, under the assumption of Lemma 4.1,

Vo, £y = U B(g, i(g)) (4.8)
2eSHG) o N (0. E)
is a neighborhood of $*(G) n A (¢, E) in G, where S'(G) denotes the unit
sphere of G and B(g,¢) :={peG:|g—pll <&} is the ball' in G of radius ¢
and centered at g.
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LemMa 42. Let @e® and Ecsupp(GN\at(G) be such that
Q(o, p, E)=0 for every peG. If Pg is lower semicontinuous, then V.,
is a neighborhood of S'(G)n N (@, E). Moreover,

i (o, g, E)
ge SHGN\A(o, E) d(g, N (0, E))

—  min 0(¢, & E)
ge SHONV.¢(e ) d(g; r/V((sz E))

Mo, E) =

> 0. (4.9)

Proof. By Lemma 4.1 and the remark before Lemma 4.2, V., - is @
neighborhood of SYG)n A (¢, E). Now we claim that for any
g€ Viip. 5y N S G\ A (9, E), there exists g*e V., N S'(G) such that

d(g*, /e, E))=2-d(g, ¥ (o, E)), and

(¢, s% E) _ Qg 8 E)
d(g*, N (¢, E)) ~d(g, ¥ (9, E))’

In fact, let g€V, N S'(G\AN (¢, E). Then there exists peS'(G)n
N (@, E) such that ||g— p|| <31-8(p). Thus,

Ig(e)—p(e)l me)<llg—pl <30(p)<3ple)l ule)  for eesupp(p),

which implies
lg(t)—3p(1)| = g(t) —3|p(2))  for teT.
Thus,

fZ(‘P)

ng_% l"d# J F4 d.u——f |pl du,  and (4.11)

1
—>-p|d du—3- du, 4.10
g—5 p} = f | lel du fzw Pl dp (4.10)

lg=z-pll=lgl—3-lpll=3 (4.12)

Let g*=2.g— p. Then (4.12) implies g* € S(G). By Lemma 4.1, supp(q)
is a unifat for ge 4 (¢, E). Since Q(g, -, E) is positively homogeneous,
satisfies the triangle inequality for elements in G with unifat supports, and
is nonnegative on G by hypothesis, A4 (¢, E). is a closed convex cone.
Therefore, 1-p+ A (¢, E)< A (0, E) and 1.4 (¢, E)= A (@, E). Hence
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d(g*, N (9, E))=d(2-(g—3%-p), /(e, E))
303 N0, E))
=2-d(g—3%-p, /(9. E))
=2-d(g, 3-p+ (g, E))
>2-d(g, Vg, E)). (4.13)
Furthermore, (4.10), (4.11), and (4.13) imply
o, g% E) Q¢ g% E) _2-0e.g—(12) p, E)
d(g*, A (e, E)) 2-d(g, (¢, E)) 2-d(g, 4 (o, E))
_9(¢. 8 E)-(1/2)-O(o, p. E) __ O(9, &, E)

d(g, /' (¢, E)) d(g, N (¢, E))

This proves our claim.
Since Q(g, -, E) and d(-, # (¢, E)) are continuous positive functions on
the compact set S'(G)\ V-, >

geSUGN\V.vor) d(g N (@, E))

Therefore, it suffices to show that the equality in (4.9) holds. Assume the
contrary that the equality in (4.9) does not hold. Then there exists
g0€ SYG)\ A (¢, E) such that

Q((p9 gO9E) < : Q((Pa g, E)

min . 414
d(go, M(@, E))  eeSHONViion dg N (g, E)) *14)

Then goe V., r,- By applying the previous claim inductively, we can get
a sequence {g,}7° <V, ;N S'(G) such that for i>1,

d(gi N (@, E))22-d(g;_y, N (@, E))22"-d(go, /(9, E)) and (4.15)
Q((ps giaE) < Q((Da gi—laE) < Q(‘pa o> E)
d(g;, (@, E)) ~ d(gi—, V(0. E)) ~ d(go, V(9, E))
(o, &, E)

< min —— (4.16
ge SN\ Vion d(g, N (@, E)) 1o

Since 0e A (o, E), d(g;, /' (0, E))< | gl =1. Thus, (4.15) implies that
20 d(gy, Mo, E))<1 for i=1. Therefore d(g,, /' (¢, E))=0, which
implies goe A (¢, E). This contradiction completes the proof of
Lemma4.2. |
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Remark. Since (¢, E) is a convex cone under the hypothesis of
Lemma 4.2, ge G\ A (o, E) implies g* :=g/| gl € SY(G)\ N (¢, E). Thus,
by (4.9) and | gl - (¢, g% E)=Q(o, g E), we get

(o, g E)=llgll - O, g%, E)= Ao, E) - ligl -d(g*, / (¢, E))
=AM, E)-d(g, ¥ (o, E)).
Since supp(p) = at(G) for pe 4 (¢, E)\ {0},
dg, N (0, EN = [ gl du.
T\(Ev at(G))

This proves the following corollary of Lemma 4.2.

CorOLLARY 4.1. Under the assumption of Lemma 42, we have
Ao, E)>0 and

0(p, 8 E)= Mo, E) - lgldp  for geG.  (4.17)

T\(E v at(G))

The following result about the range of non-atomic vector measures was
proved by Landers [14: Corollary 6]. It will be used in the proof of
Theorem 4.1.

LemMMa 4.3. Let © be a non-atomic measure defined on a o-algebra X
with values in a Banach space X. Then ©(X) < X is arcwise connected.

Now we can show that the non-atomic part of supp(G) is not essential
for the best L,-approximations.

THEOREM 4.1. Suppose that P is lower semicontinuous. If ¢ € D is such

that Q(¢, g, J)=0 for every geG, then Q(o, g, T\at(G))=0 for every
geq.

Proof. Let
of = {Ecsupp(G)\at(G): O(p, g, E)=0 for geG}.
Define a partial order on o/ by
E\,<E, if E,cE,.

Let # be a chain in &/. Then & = {E, : a €1}, where I is a well-ordered
set [127]. Define

I, ={ael: uc(E\Es) > 1/k for every f <o} for k=1,
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where
poB):=| Y gl du,
E ;=1

and {g;}} is a basis of G.
Since pg(supp(G))< oo and & is a chain, one can verify that 7, is a
finite set. Let J={)7_, I,. Then J is a countable set. Define

E=J E,.

aet

Then E is a measurable subset of supp(G)\at(G). We claim that
HWENE)=0 for ael
In fact, let
I*={o:y(E\NE)>0}.

If I* # (5, since [ is well-ordered, there is a minimal index o* e I'*. If there
is a k=1 such that

uo(E,\E)> 1k for B<a¥,

then «a*el, <J, which implies E,.cFE and w(E,.\E)=90. This is
impossibie. Thus, for any k> 1, there exists a = f, <a* such that

tel(E\Eg) <1/k.

Since a* is the minimal index in I*, f¢I* Thus, u(E,\E)=0, which
implies

Ho(EQ\E) =0,

Therefore, we have

BG(Ep\E) < po(E\Eg) + ue(Eg\E) <1/k.

Since k>1 is arbitrary, we get ug(F,.\E)=0. Since E,. is a subset of
supp(G), we have p(E,.\E)=0, which contradicts «* e [*. The contra-
diction proves our claim.

Next we claim that Ee /. In fact, rewrite E={J;2 E;. Since & is a
chain, U7_, E;= E,, for some 1< j, <n. Therefore,

lim | |g1du=f£ lgldy  for geG,

n— 0 Efn
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which implies

0(9. & E)= lim 0(p,g,E,)20 for geG.

Thus, Ee .«/. This proves the second claim.

The above two claims imply that every chain in .o/ has an upper bound.
By Zorn’s lemma, there is 2 maximal element E e ./. We will show that
E =supp(G)\at(G) and hence

Q(o, g, T\at(G)) = Q(o, g, supp(G)\at(G))=>0  for every gegG,

which will complete the proof.
By Corollary 4.1, there is a constant o > 0 such that

09, 8 E)z o | glde  for geG.  (418)

\(at(G) u E)
We may assume o < 1. Let /°°(G) be the Banach space of all real bounded

functions x on G with the supremum norm | x|l =sup{|x(g)l:geG}.
Define

(o, g, E)

where 0/0 :=0 and £ is the o-algebra generated by the measurable subsets
of the set supp(G)\(at(G) v E). Then 1: # — [*(G) is a countably additive
nonatomic vector measure. If E s supp(G)\at(G), then there is g* € G such
that

(B) = {M} for Be 4,
geqG

| ¥ du>0.
supp(G)\(at(G) v E)

It follows from this and (4.18) that
[7(supp(G)\ (at(G) v E))| > 1.

Thus, by Lemmad4.3, there is E, csupp(G)\(at(G)u E) such that
IT(E)|| = 1. Thus

Q(o, g E)

for every ge G implies that

Q0.8 EVE)=0(0. 8 E)— | |g| du>0.
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That is, EUE,esf/. Since u(E;)>0, EUE,#E, which implies
(EUE,)>E. This contradicts the fact that E is maximal in /. This
contradiction completes the proof of Theorem 4.1. §

TueoreM 4.2. If P is lower semicontinuous, then
Po(f)=1{g€G: g lac)E P 1uie)([ awcy)}  Sfor every feL (T, y).
Proof. Denote

Ps(f, at(G)) == {g€ G : g lu) € P 1oy, aa) }-

Let ge Py(f, at(G)). Then, by Lemma 2.1, for ¢ :=sign(f — g)l.qc € P,
Olo, p, &) =0 for pe G. By Theorem 4.1, we obtain that for pe G,

|, elde=] Ipl du

Z(f— gy at(G)

> pesign(f—g)du+|  Ipldu
at(G)

T\at(G}
> p-sign(f~g)du
T
By Lemma 2.1, g€ Ps(f). Thus,

Pof, at(G)) = Po(f)  for feL((T, p). (4.19)

On the other hand, choose g*e Ps(f, at(G)) = Pu(f)- Fix ge Ps(f)-
Since P, is lower semicontinuous, by Lemma 2.4, supp(g— g*) < at(G).
Since g, g* € Ps(f), by Lemma 2.5, we have

(f()—gt))-(S&y—g*(1)) =0 for teT, and (4.20)

[ le—gtdu=] (g—g*) sien(f—g") du (421)
Z(f—g%) T

Since supp(g — g*) = at(G), (4.21) implies

| g—g*ldu=] (g—g*) sign(f—g") du (422)
Z(f —g*)nat(G) a(G)

Since g*e P.(f, at(G)), by (4.20), (4.22), and Lemma 2.5, we know
g€ Pg(f, at(G)). Thus,

Pe(f) =P/, at(G))  for feL(T,p). (4.23)

(4.19) and (4.23) imply Ps(f) = Ps(f, at{G)). This completes the proof of
Theorem 4.2. |

640/66/2-8
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5. STRONG UNIQUENESS AND LipscHITZ CONTINUITY

In this section we show that if P is lower semicontinuous, then P is
uniformly Hausdorff strongly unique and Lipschitz continuous. As a conse-
quence we obtain that if G is a finite-dimensional Chebyshev subspace of
L(T, u), then P is uniformly strongly unique and Lipschitz continuous.

To do so, we first need to show that the constant A{¢p, F) in Lemma 4.2
is independent of ¢ and E.

LEMMA 5.1. Suppose that P is lower semicontinuous. Then there is >0
such that for all fe L (T, u) and ge Ps(f),

| ipldu—{ pesign(/—g)duzi-d(p,Go) for peG, (51)
2(f-9) T

where G, := {pe G :supp(p) is a unifat}.
Proof. First recall the notations used in Section 4:

& :={peL,(at(G), u): p(e)e {—1,0,1} for ecat(G)}, (5.2)

008 B)i=| lgldu—| o-gdu—] lgldu (53)
Z(p) at(G) E

Moreover, denote

&y :={ped:Q(p, g &) =0for geG}. (54)

By Lemma 2.6, w*-lim ¢; = ¢ implies w*-lim |¢,;| = |¢|. Since
| lelau=] (-lol)-Igldn,
Z(e) Ja)

(o, g, &) is w*-continuous for ped. Since & is w*-compact (cf.
Lemma 2.7), @, is a w*-compact subset of @. It follows from Theorem 4.1
that

O(o, g, T\at(G)) =0 for every geG, ped,. (5.5)

Since supp(G,) is a unifat,

W(p) = {YePo: [Y(e)— ple)] <3 for eesupp(Go)}
= {Y € D, : Y(e) = p(e) for e e supp(Go) } (5.6)
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is a w*-neighborhood of @ge@,. Since &y is w*-compact, there exist
{9,;}1 < D, such that

n

20= ) Wo). (57)

j=

Let

N(p) =N (o, T\at(G))={geG: Q(g, g T\at(G))=0} for @ed,.
(5.8)

By Lemma 4.1, A" (@) « G, for ¢ € &,. Thus, for p e @,

r
/V(<p)={geGo:f gl dp— | g-q)du=0}- (5.9)
supp(Go) N Z(p) supp(Go)
Therefore, for ¥ € W(p),
w={eeo: | slau=| gydu=ol
supp{Gg) N Z{¥) suppl(Gy)
={geGo:f Ig!dﬂ*f g-¢du=0}=ﬂf(¢)-
supp(Go) n Z(@) supp(Go)

(5.10)

Let V., be the neighborhood of A"(¢) S'(G) in G as defined in (4.8);
Le.,

Vew= U Blgdlg) (5.11)

ge SNG)n A ()

where S(G) denotes the unit sphere of G, B(g, ¢) :={peG:|g—p| <&}
is the ball of radius ¢ and centered at g in G, and

8(g) :=inf{|g(e)| - u(e) : ee supp(g)} > 0.
Then (5.10) and (5.11) imply

Vewr=Voo  for reWip) (5.12)
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Hence, by Lemma 4.2, (5.7}, (5.12), and A4"(¢) < G,, we obtain

ot (o, g, T\at(G))
o€ Py, g SHGN\Go d(g, Go)

. ) O(o, g, T\at(G))
s ,ﬁn gES}?Cf)\GO d(g, Go)

T\at
S inf inf Q(o, g, T\at(G))
pe®y ge SHANN (@) d(g, M(("))
) ) . 0o, g, T\at(G))
> inf inf inf
= l1<jsn ge W) geSUGN Vg d(g, /(o))

> inf  inf i 2@ g T\atG)
1<i<n 0eW@) 25O\ g (8, N (0)))

(5.13)

By (5.6), we know that W(g;) is also w*-compact. By (5.10),
Q(o, g, T\at(G))=0 for ¢@e W(gp;) implies ge A (¢)=A(¢;). Thus,
0O(o, g, T\at(G)) and d(g, / (¢;)) are continuous positive functions of
(¢, g) on the compact product set W(¢;)x (S'(G)\A(¢,)). Therefore,

) ) Q(o, g, T\at(G))
inf inf
veWio) geSUG\Vayy  d(g, N(9)))

>0 for 1<j<gn (514)

It follows from (5.13) and (5.14) that

(o, g, T\at(G))
@edo, g€ SHGNGo d(g, Gy)

A= >0.

Since QO(g, g, T\at(G)) and d(g, G,) are positive homogeneous with
respect to g, it is easy to see that

Q(o, & T\at(G))=4-d(g, G,) for geG, ped,. (5.15)

Finally, let feL(T,u) and ge Pg(f). Then, by Theorem 4.2 and
Lemma 2.1, ¢ :=sign(f ~ g} |.ye) € Po. Thus, by (5.15),

[ iptdu> pldu=| Ipldu
Z(f &) Z(f — g)nat(G) Z(p)

>f p-fpdu+f [pl du+ A -d(p, Go)
at(G)

T\at(G)
>[ p-sign(f—g)du+1-d(p, Go)

for all pe G. This completes the proof of Lemma 5.1. |
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Remark. Let A,=supp(G,). Then d(g, Go)= |y ,, |l du. Therefore,
(5.15) implies

| iglau—| godu—[  lglduzi-| lglan (516)
Z{op) at(G) T\at(G) T\Ap

Suppose A= {ey, .., e,} and at(G) = {e,} . Then there exists m > n such
that

A
| gl du<y- [ lgla  for gec. (5.17)
at(G\ {ex}]’ T\ Ay

It follows from (5.16) and (5.17) that

L

Let A={e,}}. Then, by (5.18) and a similar argument to that in
Theorem 4.2, we can prove

PG(f)z{gEG:gIAEPG\A(f[A)} for feL(T,p).

A
gldu—| godui—|  lglduz5[  lgldn
ey T\ (e} I s e

(0)yn {e}}

THEOREM 5.1. Suppose Pg is lower semicontinuous. Then P is uniformly
Hausdorff strongly unique; Le., there is >0 such that

I/ —gl=df, G)+p-dg Ps(f))  for feLT, pn)geG.

Proof. Llet Gy:={geG:supp(g) is a unifat}. Since supp(G,) is a
unifat, by Corollary 2.1, there is p > 0 such that

If—gl=d(f,Go)+p-dg Pg(f) for feL(T, ). geGy.  (519)

For any feL (T, u) and geG, let g¥e Py(f) be such that |g—g¥*|=
d{g, Ps(f)). By Lemma 5.1,

If~gl>[  -gldet ] (F-g) sien(s—g") da
= ig—g*du—] (g—g*)-sign(f—g*) du+I|f—g*
Z(f—g%) T

>A-d(g—g% Go)+ I/ —g*l
=d(f, G)+1-d(g—g*, G,). (5.20)
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Let p* € G, be such that d(g— g*, Go) = ||g— g* — p*{|. Then, by (5.19),
If—gl=f~g*—p*+g*+p*—gl
=z f—-g*—p*ll—dlg—g* Gy)
2d(f—g* Go)+p-d(p*, Pg(f—g*))—d(g— g%, Go)
Zd(f,G)+p-dlg—g* Po(f—8*))— (1 +p)-d(g—g* Go).
(5.21)
Let

- fp pA
f :=min {2, —-———2_(1+p)}>0.

Since 0ePs(f—g*), d(f—g* Go)=d(f~g* G). Thus, Ps(f—g*)>
Po(f—g*) 1

p-d(g, Po(f))>2-(1+p) dlg—g* Go)
then, by (5.21), we have

(f—gll=d(f,G)+p-dlg—g* Ps(f~g*))— (1+p)-dlg—g* Go)
=d(f, G)+p-d(g, Po(f))—(1+p)-d(g—g*, Gy)

>d(f, G)+5 - d(g, Po(f)) > d(f.G)+ B - d(g, Po(/)).

Otherwise, by (5.20), we get

)
\f—gll=d(f. G) +~2-_—(%7)—)-d(ga Pe(f))zd(f, G)+B-d(g, Pe(f))

Thus, P is uniformly Hausdorff strongly unique. 1§

It follows from Park’s result [25, 267 that the uniform Hausdorff strong
uniqueness of P, implies the Lipschitz continuity of Pg. Thus, by
Theorem 5.1, we have the following characterization of lower semi-
continuity of Py.

THEOREM 5.2. The following statements are equivalent:

(1) Pg is lower semicontinuous;
(2) Pg is uniformly Hausdorff strongly unique;
(3) P is Lipschitz continuous.
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CoroLLARY 5.1. If G is a finite-dimensional Chebyshev subspace of

L (T, u), then Pg is uniformly strongly unique and Lipschitz continuous.

Remark. This result may scem surprising since for a finite-dimensional

Chebyshev subspace M of C(T) with compact infinite 7, P,, is Lipschitz
continuocus if and only if dim M =1.

We know that if P is Lipschitz continuous, then it has a Lipschitz con-

tinuous selection [97]. Thus, another easy consequence of Theorem 5.2 is
the following stronger version of the Michael selection theorem [22].

COROLLARY 5.2. If P is lower semicontinuous, then P; has a Lipschitz

continuous selection.
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